183 research outputs found

    On-Demand Resource Management for 6G Wireless Networks Using Knowledge-Assisted Dynamic Neural Networks

    Full text link
    On-demand service provisioning is a critical yet challenging issue in 6G wireless communication networks, since emerging services have significantly diverse requirements and the network resources become increasingly heterogeneous and dynamic. In this paper, we study the on-demand wireless resource orchestration problem with the focus on the computing delay in orchestration decision-making process. Specifically, we take the decision-making delay into the optimization problem. Then, a dynamic neural network (DyNN)-based method is proposed, where the model complexity can be adjusted according to the service requirements. We further build a knowledge base representing the relationship among the service requirements, available computing resources, and the resource allocation performance. By exploiting the knowledge, the width of DyNN can be selected in a timely manner, further improving the performance of orchestration. Simulation results show that the proposed scheme significantly outperforms the traditional static neural network, and also shows sufficient flexibility in on-demand service provisioning

    Imperfect Digital Twin Assisted Low Cost Reinforcement Training for Multi-UAV Networks

    Full text link
    Deep Reinforcement Learning (DRL) is widely used to optimize the performance of multi-UAV networks. However, the training of DRL relies on the frequent interactions between the UAVs and the environment, which consumes lots of energy due to the flying and communication of UAVs in practical experiments. Inspired by the growing digital twin (DT) technology, which can simulate the performance of algorithms in the digital space constructed by coping features of the physical space, the DT is introduced to reduce the costs of practical training, e.g., energy and hardware purchases. Different from previous DT-assisted works with an assumption of perfect reflecting real physics by virtual digital, we consider an imperfect DT model with deviations for assisting the training of multi-UAV networks. Remarkably, to trade off the training cost, DT construction cost, and the impact of deviations of DT on training, the natural and virtually generated UAV mixing deployment method is proposed. Two cascade neural networks (NN) are used to optimize the joint number of virtually generated UAVs, the DT construction cost, and the performance of multi-UAV networks. These two NNs are trained by unsupervised and reinforcement learning, both low-cost label-free training methods. Simulation results show the training cost can significantly decrease while guaranteeing the training performance. This implies that an efficient decision can be made with imperfect DTs in multi-UAV networks

    Corrected Navier-Stokes equations for compressible flows

    Full text link
    For gas flows, the Navier-Stokes (NS) equations are established by mathematically expressing conservations of mass, momentum and energy. The advantage of the NS equations over the Euler equations is that the NS equations have taken into account the viscous stress caused by the thermal motion of molecules. The viscous stress arises from applying Isaac Newton's second law to fluid motion, together with the assumption that the stress is proportional to the gradient of velocity1. Thus, the assumption is the only empirical element in the NS equations, and this is actually the reason why the NS equations perform poorly under special circumstances. For example, the NS equations cannot describe rarefied gas flows and shock structure. This work proposed a correction to the NS equations with an argument that the viscous stress is proportional to the gradient of momentum when the flow is under compression, with zero additional empirical parameters. For the first time, the NS equations have been capable of accurately solving shock structure and rarefied gas flows. In addition, even for perfect gas, the accuracy of the prediction of heat flux rate is greatly improved. The corrected NS equations can readily be used to improve the accuracy in the computation of flows with density variations which is common in nature.Comment: 13 pages, 7 figure
    • …
    corecore